RELATIVE RADIOMETRIC NORMALIZATION USING SEVERAL AUTOMATICALLY CHOSEN REFERENCE IMAGES FOR MULTI-SENSOR, MULTI-TEMPORAL SERIES

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images

Relative radiometric normalization (RRN minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in sudace reflectance. Five methods of RRN have been applied to 1973, 1983, and 1988 Landsat MSS images of the Atlanta area for evaluating their pedormance in relation to change detection. These methods include pseudoinvariant features (P...

متن کامل

Relative Radiometric Normalization of Multitemporal images

— A correct radiometric normalization between both images is fundamental for change detection. MAD method and its IR-MAD extension in an implementation on multisprectral aerial images is described in this paper.

متن کامل

Radiometric Normalization of Multi-temporal High Resolution Satellite Images with Quality Control for Land Cover Change Detection

The radiometric normalization of multi-temporal satellite optical images of the same terrain is necessary for land cover change detection e.g. relative differences. In previous studies, ground reference data or pseudo invariant features (PIFs) were used in the radiometric rectification of multi-temporal images. Ground reference data are costly and difficult to acquire for most satellite remotel...

متن کامل

Relative radiometric normalization of H-res multi-temporal thermal infrared (TIR) flight-lines of a complex urban scene

Useful biophysical information such as surface temperature and surface energy flux provided by thermal infrared (TIR) remote sensing sensors are commonly used for studying urban temperature variations and urban heat islands. However, an important limitation of TIR imagery is the influence of local microclimatic variability (i.e., wind, precipitation and humidity) on sensor observations. This ca...

متن کامل

Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images

Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences

سال: 2020

ISSN: 2194-9050

DOI: 10.5194/isprs-annals-v-2-2020-845-2020